skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cohen, Max"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ozay, Necmiye; Balzano, Laura; Panagou, Dimitra; Abate, Alessandro (Ed.)
    Free, publicly-accessible full text available June 4, 2026
  2. Fast microfluidic mixers are a valuable tool for studying solution-phase chemical reaction kinetics and molecular processes with spectroscopy. However, microfluidic mixers that are compatible with infrared vibrational spectroscopy have seen only limited development due to the poor infrared transparency of the current microfabrication material. We describe the design, fabrication, and characterization of CaF2-based continuous flow turbulent mixers, which are capable of measuring kinetics in the millisecond time window with infrared spectroscopy, when integrated into an infrared microscope. Kinetics measurements demonstrate the ability to resolve relaxation processes with 1 millisecond time resolution, and straightforward improvements are described that should result in sub-100 µs time-resolution. 
    more » « less
  3. Functional electrical stimulation (FES) has proven to be an effective method for improving health and regaining muscle function for people with limited or reduced motor skills. Closed-loop control of motorized FES-cycling can facilitate recovery. Many people with movement disorders (e.g., stroke) have asymmetries in their motor control, motivating the need for a closed-loop control system that can be implemented on a split-crank cycle. In this paper, nonlinear sliding mode controllers are designed for the FES and electric motor on each side of a split-crank cycle to maintain a desired cadence and a crank angle offset of 180 degrees, simulating standard pedaling conditions. A Lyapunov-like function is used to prove stability and tracking of the desired cadence and position for the combined cycle-rider system. One experimental trial on an able-bodied individual demonstrated the feasibility and stability of the closed-loop controller, which resulted in an average cadence error of 2.62 ± 3.54 RPM for the dominant leg and an average position and cadence error of 39.84±10.77 degrees and −0.04 ± 8.79 RPM for the non-dominant leg. 
    more » « less